Dynamic Application
Static Application
ML Project
Python Special
Others
RASA Chatbot (VolgAI, Personal FAQs)
# Links to personal FAQ chatbot: personal\_bot: [Personal_Chatbot](https://sbmagar.github.io/) …. source code : [GitHub](https://github.com/SBMagar/personal_chatbot) Bot is developed using Python RASA-Stack(Docker, docker-compose, supervisord, Nginx, RabbitMQ, Redis, PostgreSQL etc.)
Project details...
For demo project: [https://sbmagar.github.io](https://sbmagar.github.io)[](https://sbmagar.github.io) (Due to server limit, might not work at the time) Please do visit, [https://volgai.com](https://volgai.com) for official chatbot. ![](https://res.cloudinary.com/sbmagar-media-storage/image/upload/v1/media/django-summernote/2021-08-25/5adfb73a-3a2c-4956-8762-90cdb6051e9f_migdu1) ![](https://res.cloudinary.com/sbmagar-media-storage/image/upload/v1/media/django-summernote/2021-08-25/9c2816b6-2c31-44a2-9af4-d3632f6e70c8_tacaug)![](https://res.cloudinary.com/sbmagar-media-storage/image/upload/v1/media/django-summernote/2021-08-25/c0e3a644-44ec-4b0d-bf9c-47790a548fcc_wygzp2)
Project screenshot
An AI powered Information Retrieval chatbot developed using the RASA stack.(Python, JavaScript, JQuery, HTML/CSS, YAML, Docker, docker-compose, supervisord, Nginx, RabbitMQ, Redis, PostgreSQL etc.) **Tasks/Achievements:** **Overall Result:** * Chatbot Development from scratch with RASA Stack(NLP). * Model Optimization, pipeline configurations, rasa-x integration. * STT intgration with rasa chatbot. * chatbot frontend development. * Docker/docker-compose deployment, supervisord, nginx, postgres, rabbitmq, etc. for deployment. **Designing and concepts:** * Define chatbot personality * User intent, Chatbot action (interaction) design * User testing with GUI * Concepts of RASA core, RASA NLU, Domain, Stories, NLU Data, etc. Building and working: * Understanding of user input, NLP * Natural Language Understanding(NLU) * Different approaches for the response that the chatbot will generate * Intent and Entity extraction, slots using, LSTM-RNN, GRU cell * Contextual dialogue handling with deep learning